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Surprisingly, deterministic time series can generate highly irregular, random-appearing
trajectories. These deterministic time series result from nonlinear dynamical systems of
differential or difference equations. The random appearance displayed by these systems
is called nonlinear dynamical complexity. Properties of nonlinear complex systems include
aperiodic random appearance, sensitive dependence on initial conditions and model
parameters, and nonstationarity, Experiments involving the operation of simulated
business environments and theoretical nonlinear dynamical models for inventory are
reviewed to explore motivating factors that can give rise to demand with nonlinear
complexities. The experimental and theoretical evidence reviewed indicates that nonlinear
complexities in demand have significant implications for inventory management. Thus,
researchers and practitioners in inventory management need to consider these properties
when choosing inventory management methods. Characteristics of nonlinear dynamical
systems and their implications for inventory management are presented in this paper.
The use of the Brock, Dechert, and Scheinkman (1987) (BDS) test for nonlinear

dependence is demonstrated on actual demand data.

INTRODUCTION

Numerous economic and financial time series ex-
hibit evidence of nonlinear complexities, i.e. de-
terministic components that appear random using
conventional time series methods (see Ashley and
Patterson, 1989; Barnett and Chen, 1988; Brock
and Sayers, 1988; Frank and Stengos, 1988, 1989;
Scheinkman and LeBaron, 1989; Hsieh, 1989,
1991, 1993; Mignacca and Gallegati, 1994). These
components result from time dependent nonlin-
ear models known as nonlinear dynamical systems
(Jackson, 1991). Furthermore, Pinder (1994) pre-
sents empirical evidence of nonlinearities in de-
mand data. In addition to the nonlinear complexi-
ties found in field data, Sterman (1989),
Mosekilde er al. (1991) and Paich and Sterman
(1993) describe nonlinear complexities found in
experiments involving the operation of simulated
business environments. Boldrin (1989), Day and
Walter (1989), Day (1994), Goodwin (1990), Me-
dio (1992) and others present theoretical models
of inventory systems that exhibit nonlinear com-
plexity. Thus, nonlincar complexitics have been
theoretically postulated and observed in field and
experimental data,
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Time series with nonlinear complexities can
create difficulties for inventory management.
Stochastic inventory models depend on the
probabilistic properties of the demand for the
firm’s goods and services. Research in stochastic
inventory models in summarized by Hax and Can-
dea (1984). Lordahl and Bookbinder (1994) show
that deviations from the assumption of normality
increase expected annual inventory costs. More
generally, Iyer and Schrage (1992), Sinha and
Matta (1991), and Zheng (1992) show that depar-
tures from the independence and stationarity as-
sumptions increase holding costs, backorder costs,
and stockouts.

Developing improved forecasts for demand with
nonlinear complexity also presents difficulties for
inventory management. The nonlinear structure
of these models produces extreme sensitivity in
the demand forecasts. Small errors in either data
measurement or parameter estimated lead to
large forecasting errors. These, in turn, can lead
to increased inventory costs as well as capacity
and scheduling problems.

This paper describes the difficulties in inventory
management inherent in demand data with non-
linear complexities, how to detect nonlinear com-
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plexities, and appropriate inventory models to
reduce inventory holding and backorder /stockout
costs when demand data contain nonlinear com-
plexities. The properties of nonlinear dynamical
complexity are given in the next section of the
paper along with implications of these properties
for inventory management. Previous nonlinear
dynamical inventory models with nonlinear com-
plexity are discussed in the third section. Mea-
sures for detecting nonlinear dynamical complex-
ity are explained in the fourth section. The fifth
section presents a step-by-step analysis of actual
weekly demand for oil filters to demonstrate an
apparently innocuous time series which contains
nonlinear dependencies. This section also pre-
sents the application of ceveral inventory policies
to this data which shows that (s,§) inventory
policies are not optimal for this demand data. It is
also demonstrated in the fifth section that fore-
casting improvements suggested by tests for non-
linear complexity lead to reduced inventory costs.
The final section summarizes the importance of
nonlinear dynamics for inventory management
and implications for further research.

NONLINEAR COMPLEXITY AND ITS
IMPLICATIONS FOR INVENTORY
MANAGEMENT

Nonlinear dynamical systems have several distin-
guishing characteristics. The most notable is that
deterministic difference or differential equations
describing the state variables of the system gener-
ate time series that appear random. Despite their
random appearance, plots of state space behavior
are bounded. Another distinguishing feature of
these systems is that small changes in the initial
conditions result in significantly different time
series values after only a few time periods. Simi-
larly, small changes in a coefficient, or parameter,
of an equation result in significantly different
time series values. Thus, these systems are ex-
tremely sensitive to measurement and initial con-
ditions.

To illustrate these characteristics, consider the
logistic map, a univariate nonlinear dynamical sys-
tem given by:
0<a<4d

X, =aX,(1-X), 0<X, <1

(1)
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For 0 < a < 3, the model is ‘well behaved’ with
stable steady-state solutions. As « increases above
3, the number of steady-state solution increases
rapidly to cause complex behavior that appears
random.

As a population growth model, X, is the pro-
portion of the population in generation ¢ with a
given characteristic. For example, the percentage
of the population in the next generation with a
specific trait is proportional to the current per-
centage with the trait times the current percent-
age without the trait. Applications of this model
occur in epidemiology, business (Goodwin, 1990;
Baumol and Benhabib, 1989), and macroeconomic
models (Goodwin, 1990; Medio 1992). Goodwin
(1990) presents a model of innovation capacity
and investment required to create new capacity
based on the logistic model. The nonlinear com-
plexities in this model prevent the system from
reaching an equilibrium capacity. Baumol and
Benhabib (1989) present a logistic model for ad-
vertising. Again, nonlinear complexities prevent
the system from reaching an equilibrium state.

To illustrate the apparent randomness in such
models, consider the two time series in Fig. 1.
Times series A is completely deterministic and
was generated using Eqn. (1) with a«=3.95 and
an initial value of X, = 0.05. A Gaussian pseudo-
random process generated time series B. Pseudo-
random processes are actually nonlinear dynami-
cal systems. Significant research effort has gone
into the development of pseudo-random number
algorithms to make then as random as possible
(Press et al,, 1992). Data generated by the Gauss-
ian pseudo random algorithm used here have
been shown to pass tests for normality and inde-
pendence.

Demand distribution parameters are used to
determine the reorder point of an inventory pol-
icy. The mean serves to estimate demand during
lead time and variance (or some other measure of
spread Lordahl and Bookbinder, 1994) serves as a
determinant of safety stock and service level.
When demand distribution parameters are not
stationary different inventory policy values are
required for each change in the parameters. Data
that are not independent are not identically dis-
tributed, i.e. not stationary. Therefore, the lack of
independence and identical distribution parame-
ters for data with nonlinear complexities causes
the estimates of demand during lead time and

Further reproduction prohibited without permission.



P

200

Time Series B

Figure 1. A random time series and a deterministic time series.

safety stock to be inaccurate. As a result, this
leads to incorrect reorder points, causing in-
creased inventory costs.

Time series generated by nonlinear dynamical
processes are not stationary (Ruelle, 1989). Sea-
sonality, backorders and stockouts can readily
affect demand, creating nonlinear dependence in
the time series. Sinha and Matta (1991) show that
(R,S) models are optimal for stationary stochastic
multi-echelon situations with finite distribution
parameters. Iyer and Schrage (1992) show that
(s, §) inventory policies are not optimal for de-
mand that is not IID. They also discuss the effects
of using optimal settings of (s, §) parameters in
the nonoptimal situation when demand is not
independent. Thus, stochastic inventory models,
such as (s, Q), (s, 8), (R, ), and (R, s, S), that
require stationarity yield sub-optimal inventory
policies for data with nonlinear complexity.
Hence, it is crucial to detect whether apparently
random data may have nonlinear dependencies.

Another characteristic of nonlinear dynamics is
sensitivity to changes in initial conditions. In Fig.
2, the initial value changes by only 0.01%. A
significant divergence of the two time paths oc-
curs by approximately the fifteenth time period.
Unlike most deterministic systems, the divergence
is not readily predictable based ¢n the magnitude
of the change in the initial value. Hence, mea-
surement of the time interval, starting time, and
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initial value require extreme accuracy and preci-
sion, making long-term forecasting of time series
with nonlinear dynamical components difficult.
Extreme dependence upon initial conditions pre-
cludes independence, and violates the requisite
assumptions of stochastic inventory models.

In much the same manner that small changes in
the initial value affect nonlinear dynamical sys-
tems, small changes in parameter values result in
rapidly divergent time paths. Figure 3 illustrates a
situation in which « of Eqn. (1) changes by only
0.01%. This sensitivity makes long-term forecast-
ing suspect unless parameter estimates offer ex-
traordinary accuracy.

Each variable in a system of nonlinear dynami-
cal equations corresponds to a state space dimen-
sion. State space variables can be plotted against
each other to observe the system’s behavior
through time. These plots are called phase por-
traits. For a univariate time series, lagged vari-
ables are used to create the phase portrait. If the
state of the system is atfracted to a particular
region or set of points in the phase portrait, then
that region or set of points is known as an atfrac-
tor. Thus, an attractor is a ‘picture’ of the limiting
behavior of the state of a system. Limiting behav-
ior can be a fixed equilibrium points, a cycle of
point, or an aperiodic bounded set of points. The
last form of behavior arises from nonlinear com-
plexities and results in aperiodic behavior that
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Figure 2. Sensitive dependence on initial conditions.

appears random. Grassberger and Procaccia
(1983) and Ruelle (1989) provide formal mathe-
matical definitions of attractors.

Using Eqn. (1) with «=3.95 and an initial
condition of X, = 0.05, the phase portrait for the
logistic map is generated by plotting the current
state, X,, against next period’s state, X,,, (see
Fig. 4). The random appearance in Fig. 1 is now
observed to be limited to the parabolic cluster of
points in Fig. 4. This cluster of points is the
attractor for the logistic map and represents the
limiting behavior for this system. A significant
feature of systems with nonlinear complexity is
that they exhibit an attractor and do not fill the
entire state space. In contrast, a bivariate random
process would completely fill the two-dimensional
state space. It is surprising that the regular
parabolic shape in Fig. 4 could generate the ap-
parently random behaviour in Figs. 1 through 3.
To explain how this comes about, Fig. 5 traces ten
sequential states in Fig. 4. The time path traced
in Fig. 5 shows that while a given point indicates
the state in the next period, it does not indicate
subsequent states without forward iteration
through each intervening state. Without an indi-
cation of future states, random appearance en-
sues.

Because nonlinear dynamical systems appear
random, are not IID, and are extremely sensitive
to initial conditions and model parameters, they

describe deterministic systems with endogenous
complex behavior and instability. On the other
hand, the aperiodic bounded attractors of these
systems can aid in describing their general limit-
ing behavior. These properties are strikingly dif-
ferent than the properties of independence and
stationarity assumed in stochastic models used for
inventory management.

NONLINEAR DYNAMICAL MODELS
OF DEMAND

Several nonlinear dynamical demand and inven-
tory models have been postulated and examined
by researchers in economics and marketing. These
models present experimental and theoretical evi-
dence of demand with nonlinear complexities and
provide motivating factors for such demand.
Sterman (1989) and Mosekilde et al. (1991) pre-
sent results from an inventory management simu-
lation in which subjects attempt to operate a
production-distribution chain to minimize costs.
The simulated system contains multiple en-
dogenous factors, feedbacks, nonlinearities, and
time delays. In these experiments, the interaction
of individual decisions with the structure of the
simulated firm produces dynamics that systemati-
cally diverge from optimal behavior. The resulting
inventory levels display nonlinear complexities
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Figure 3. Sensitive dependence on model parameters.

over various parameter ranges. This implies that
small changes in either the situation, such as
rates of information update, order lags or lead

time, or decision parameters can result in radi-
cally different behavior. In this simulation de-
mand in not a random variable; demand is 4 units
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Figure 4. Attractor for the logistic map.
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Figure 5. Interpoint connections for the logistic map.

for the four periods and then steps up to 8 units
for the rest of the simulation. Nonlinear complex-
ities in inventory levels are due to nonlinearities
in stocking decision policies. Thus, even with a
‘simple’ pattern of demand, nonlinear dynamical
complexities can occur in inventory systems due
to responses by decision makers.

In a simulation of price and capacity choices for
an airline, Paich and Sterman (1993) show that
dynamical complexities occur in price and quan-
tity settings due to feedback and time lag mecha-
nisms. Furthermore, these dynamical complexities
often led to extremes of either very rapid growth
or bankruptcy.

Mosekilde ef al. (1992) show that markets char-
acterized by long lags, strong positive feedbacks,
accumulations, and nonlinearities (such as
commercial real estate, shipping, and capital
goods) suffer more from instability and complex-
ity than those with fewer feedback (such as soft
goods and services). These lags, feedbacks, accu-
mulations, and nonlinearities are frequently cre-
ated by inventory policies. Thus, inventory poli-
cies can serve as a mechanism creating instability
and nonlinear complexity.

Day (1994) postulates market mechanisms that
describe the dynamic behavior of price and quan-

tity in individual competitive markets. In one
particular model, Day describes the ‘market me-
diators’ (wholesalers, retailers, merchants, bro-
kers, or trading specialists) who supply demanders
out of inventory at an announced price and re-
stock inventories by purchasing from suppliers,
again at an announced price. Thus, as in the real
world, suppliers and demanders do not bargain
directly with each other; they simply carry out
their transactions with the market mediator. As
markets attempt to clear, price and quantity are
not equilibrated and there is either excess supply
(accumulation of inventory) or excess demand
(depletion of inventory or possibly stockout). Like
Sterman (1989) and Mosekilde et al. (1992), Day
shows that the feedbacks and time lags due to the
market mediator can lead to nonlinear complexi-
ties; including the rapid growth or bankruptcy
shown in Paich and Sterman’s (1993) experiments.
Note that the subjects in Sterman’s simulations
provide the same function as Day’s market medi-
ators.

Goodwin (1990) presents several nonlinear dy-
namical models for economics. Each of these
models displays the attributes of nonlinear com-
plexity and are based on well-known economic
models. One model, developed from classical
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economic theory, relates the production of an
agricultural good (corn) in response to a quadratic
demand function and is a variation of the Logistic
Map model. Goodwin (1990) also uses two cyclic
models from the 1930’s, the Lundberg—Metzler
inventory cycle model and the Hansen—-Samuel-
son business cycle model, to develop two models
of production, demand and inventory that have
nonlinear complexity. Both of these models are
related to the Rossler band (Jackson, 1991) and
have attractors similar to that in Fig. 6. Brock and
Sayers (1988) analyze macroeconomic data for
signs that business cycle effects may be attributed
to nonlinear dynamical systems.

Medio (1992) uses Metzlar (1941), Gandolfo
(1983), and Lorenz (1989) to derive a Rossler-type
inventory business cycle model similar to Good-
win’s (1991) models. Medio extends Goodwin’s
work by providing the proofs to show mathemati-
cally how and why these systems have nonlinear
dynamical complexity. These proofs are accom-
plished by calculating the Liapunov exponent for
these systems; a measure of sensitive dependence
on initial conditions and instability of differential
equation solutions.

Boldrin (1989) provides a rationale for the exis-
tence of chaotic competitive-equilibrium paths
with the context of a simple, aggregated optimal-
growth model with two sectors. This model has a

200 +~

nonlinearly complex demand component that is
tied to a utility function, labor wage rates, capital
stock, price, and rental for two industries. Fur-
thermore, Boldrin provides mathematical proofs
of the existence of nonlinear complexities in this
model.

Day and Walter (1989) present a very long-run
macroeconomic growth model in which popula-
tion technology, and social infrastructure undergo
regime changes. The regimes of the model are
shown to compare favorably with actual regimes
over several epochs. The mathematical analysis of
this model shows that nonlinear complexities oc-
cur during the regime changes.

Hibbert and Wilkinson (1994) present a model
of brand competition (market share) based on a
predator/prey model (Kelly and Peterson, 1991).
The nonlinear complexities of demand that arise
are due to the competition between two con-
sumer goods firms rather than to actions of con-
sumers.

These models and experiments show that non-
linearly complex demand time series can arise
due to many factors such as: inventory decision
rules, timelags or lead time, nonlinear supply and
demand functions, business cycle effects on wage
and capital rates, innovations in technology or
capital, or the interaction between competing
firms. These models and experiments demon-

Inventory

Figure 6. Attractorfor the Rossler Band.
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strate that nonlinear complexity can occur in de-
mand time series and that shocks previously
thought to be exogenous can be generated through
the endogenous structure of demand and inven-
tory models. Furthermore, the nonlinear complex-
ities can result in extreme behavior results of very
rapid growth or bankruptcy. Thus, the experimen-
tal and theoretical evidence indicates that nonlin-
ear complexities in demand have significant impli-
cations for inventory management.

DETECTING NONLINEAR
COMPLEXITY IN DEMAND DATA

The systems described in the previous section
were derived theoretically rather than empirically.
Furthermore, there are occasions when not all
variables of a nonlinear dynamical system are
observable to the analyst/researcher; as is the
case when competitors’ cost or demand informa-
tion is proprietary. Thus, nonlinear dynamical re-
search in economics and finance has concentrated
on detecting chaos through the analysis of exist-
ing time series data by means of tests to distin-
guish between random and deterministic time
series.

The key to detecting the presence of nonlinear
complexity is the dimension of a system’s attrac-
tor. Because the attractor of nonlinear complex
system is noncontinuous, aperiodic, and bounded,
the dimension of the attractor of a chaotic system
is noninteger and is less than the dimension (an
integer) of the state space. The dimension of the
state space is the embedding dimension. Because a
random process completely fills its state space,
the dimension of its attractor is the embedding
dimension (Barnett and Chen, 1988). Grassberger
and Procaccia’s (1983) correlation dimension ap-
proximates the dimension of the attractor.

Correlation Dimension

The correlation dimension is determined by first
computing the Correlation integral. Let X, be a
vector of T observations from a time series. After
choosing an appropriate embedding dimension,
m, an m-dimensional vector is formed: X" = (X,
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X,415 s Xyym—1) Each m vector is of length
T —m + 1. Calculate the correlation integral:

Cpr(e)=#((t,5),0<t <s<T: | X" ~ X" < ]
+((T-m+1(T—-m)/2) 2)

where || [l is the sup norm. The correlation inte-
gral measures the fraction of pairs of points (X;”,
X™) in the m-dimensional state space that are
within a distance & of each other. Thus, the corre-
lation integral is the probability that two points
chosen at random are less than & units apart.

To calculate this probability, an embedding di-
mension, m, must be chosen. This is achieved by
plotting the phase portrait for increasing lags of
the time series. If there appears to be an attrac-
tor, then m is an appropriate embedding dimen-
sion.

As ¢ increases, C,, should increase proportion-
ately to £°, where D is the correlation dimen-
sion. Thus:

C, xs” ®
or

In(C,,) = D In(&) + constant (C))

D is estimated by calculating C,, (&) for increas-
ing values of & and regressing In(C,, ;(£)) against
In(e). Convergence will occur when /m is higher
than D since an attractor embedded in a higher
dimension retains its true dimension because of
the correlation between points (Brock, 1986;
Brock and Dechert, 1988). High values of D are
evidence for random systems; low values of D
indicate deterministic systems.

BDS Test Statistic for Independence

Because there is no statistical inference for the
correlation integral, Brock et al. (1987) developed
a test statistic (the BDS test) based on the corre-
lation integral. The null hypothesis for this test is
that the observations in the time series X, are
IID.

If X, is a random sample of IID observations,
then:

C,.(e)=Cy&)" 5)
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and C, r(¢) and C; (&)™ are estimated for a
sample of size T by Eqn. (2). Brock et al. (1987)
show that the BDS statistic:

Wm,T (6') = \/T(Cm’r(c) - Cl'T(S)m)/U'm'T(S)
6)

converges in distribution to a standard normal,
N(0,1), as T increases. In Eqn. (6), o;2;(¢) is an
estimate of the asymptotic variance of (C,, r(&) —
C,7(&)"). Thus, to test for independence and
randomness of the observations in a time series,
compute the BDS statistic. If the absolute value
of the test statistic is large, the null hypothesis of
IID (randomness) will be rejected. Conversely, if
the data are IID then a small BDS statistic indi-
cates stationarity and independence.

Furthermore, the BDS statistic can be applied
to the residuals of a forecasting model to de-
termine if there is only white noise remaining in
the residuals. If there is some structure remaining
in the residuals (they are not IID) then additional
structure is required in the model. The additional
structure can take a wide variety of forms, includ-
ing: nonlinear model structure, additional vari-
ables, autoregressive conditional heteroscedastic-
ity (ARCH, see Engle, 1982), or simultaneous
equations.

Calculation of the BDS test provides three im-
portant pieces of information regarding the reli-
ability of a demand forecast. First, a large BDS
statistic indicates that the time series may rapidly
diverge from slightly different estimates of the
initial conditions. Thus, the initial conditions must
be measured as precisely as possible to forecast
demand accurately. Second, a large BDS statistic
limits the time horizon for forecasting accuracy.
Unfortunately, there is no direct measure to re-
late the BDS statistic to the length of time before
the divergence in time paths is significant. Third,
a large BDS statistic indicates that estimates of
structural model! coefficients must have extremely
tight confidence intervals,

Researchers have successfully used the BDS
test to detect nonlinearities in economic and fi-
nancialdata..Scheinkman._and.LeBaron_(1989)
detect significant departures from random-walk
behavior in returns on the equal-weighted and
value-weighted NYSE stock indices for both
weekly and monthly data. Similarly, Hsieh (1991)
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shows that 15-minute stock returns exhibit non-
linear dependence. Hsieh (1989) finds significant
departures from random normal (Gaussian) mod-
els for forecasted exchange rates of the US dollar
against the Japanese yen, the British pound, and
the German mark. Again using currency data,
Hsieh (1993) shows that daily log price changes in
currency future contracts are not IID. Mignacca
and Gallegati (1994) use the BDS test on residu-
als of an ARMA model of US GNP to identify
different regimes in the data.

Pinder (1994) presents empirical evidence of
nonlinearities in demand data. This research
shows that the BDS test identifies departures
from IID assumptions not detected by the
Durbin—-Watson test for autocorrelation, the Q*
test (Kmenta, 1986) for autocorrelation, or Engle’s
ARCH test (Engle, 1982; Kmenta, 1986) for au-
toregressive conditional heteroscedasticity
(ARCH). Thus, the BDS test has been used suc-
cessfully in several contexts to detect dependen-
cies that are undetected by other statistical mea-
sures.

NONLINEAR DEPENDENCE IN AN
ACTUAL DEMAND TIME SERIES

The following analysis of an actual demand time
series demonstrates two applications of the BDS
test and shows the effects of applying stochastic
inventory policies to demand data with nonlinear
dependencies. First, the use of the BDS statistic
as a test for conformance to the HD assumptions
of stochastic inventory models is demonstrated.
Second, the BDS test is featured as an indication
of forecasting process impovement. If the BDS
statistic indicates that the errors are 11D, then no
further progress in the forecasting model devel-
opment is possible. Conversely, rejection of the
IID null indicates the presence of other factors
associated with the data. Finally, several inven-
tory policies are applied to the same actual de-
mand time series to show that stochastic inven-
tory models are not optimal for demand data with
nonlinear dependencies and that forecasting im-
provements indicated by the BDS test reduce
inventory costs.

Figure 7 shows nearly four years of weekly
demand for a component of a piece of agricul-
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tural equipment. These components supply de-
mand of both newly manufactured equipment re-
quiring new components and for replacement
components. The seasonality typically associated
with agricultural equipment is readily observable.
Many nonlinear complex systems contain cyclical,
or oscillatory components, such as seasonality
(Brock and Malliaris, 1989; Jackson, 1991).

The original data were deseasonalized by weekly
multiplicative indices. Figure 8 shows the time
series plot of the deseasonalized demand and
reveals a downward trend in the clata. This down-
ward trend corresponds with the macroeconomic
conditions in the agricultural sector of the US
economy at that time.

TESTING STOCHASTIC MODEL
ASSUMPTIONS

Bock, Hsich, and LeBaron (1991) (BHL) use
simulation to determine the power of the BDS
statistic and provide quantiles for the BDS statis-
tic for samples of 100, 250, and 500 observations;
embedding dimensions of 2, 3, 4, and 5; and ¢
equal to 0.50 and o; where o is the standard
deviation of the time series. The critical value
reported by BHL for a sample size of 100, m = 2,

1500
1400
1300
1200
1100
1000

&= o, and a significance level of 0.05, is 2.22; at a
significance level of 0.01, the critical value is 3.40.

Figure 9 presents the distribution and descrip-
tive statistics for the deseasonalized demand. The
data appear random and approximately normal.
For the analysis of the 189 observations of the oil
filter demand time series, the quantiles for a
sample size of 100 are used to provide a conserva-
tive estimate of the distribution of the BDS statis-
tic. An embedding dimension of 2 and an &=
1742 (¢/o=1) yields a BDS statistic for the
deseasonalized time series of 25.24. Therefore the
null hypothesis of IID can be rejected. Thus,
stochastic inventory models that assume indepen-
dence and stationarity of demand parameters are
not appropriate for this time series.

These results are consistent with the appear-
ance of the downward trend in Figure 8. This
demonstrates the ability of the BDS statistic to
assess conformance of the data to the assump-
tions of stochastic inventory models.

Forecasting Model Development

The magnitude of the BDS statistic for the desea-
sonalized demand data indicates that there are
other deterministic components, such as the trend
component apparent in Figure 8. At this stage of

-
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Figure 7. Fouryears of weekly demand.
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Figure 8. Descasonalized weekly demand.

the analysis, the BDS statistic becomes an indica-
tor of improvement in the forecasting model.
Residuals of a forecasting model should be IID to
insure that sufficient explanatory factors have
been taken into account.

Often the first explanatory factor to be con-

sidered is the order of integration. To determine
whether the series should be modeled in differ-
ences (see Figure 10) or levels, the Augmented
Dickey-Fuller (ADF) (Dickey and Fuller, 1981;
Engle and Granger, 1987) is used to determine
the order of integration (I(d)). The null hypothe-

1400 1600

1200

400 600 800 1000

Quantiles
maximum 100.0% 1510.6
quartile 75.0% 945.6
median 50.0% 835.3
quartile 25.0% 7342
minimum 0.0% 473.0

Moments
Mean 846.693
Std Dev 174.194
Std Err Mean 12,671
upper 95% Mean 871.688
lower 95% Mean 821.698
N 189.000

Figure 9. Distribution of deseasonalized weekly demand.
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sis of the ADF test is that the series is I(1) versus
a specified alternate hypothesis that the series is
1(0). Engle and Granger (1987) generated statis-
tics for a ¢ test of this hypothesis. At a signifi-
cance level of 0.05 and a sample size of 100, the
critical value given by Engle and Granger (1987)
is 3.17. Conducting this test on the deseasonalized
data yields a ¢-statistic of —0.8405; this supports
the null hypothesis of an I(1) series and suggests
the demand data be modeled in levels.

Based on the results of the ADF, autoregressive
models were investigated to describe the trend
component. Testing lag lengths 1 through 12
showed the first lag to be the only significant lag.
Based on these test, the oil filter demand data
was estimated as an AR(1) model. The results of
this regression are presented in Table 1.

The residuals of the AR(1) model in Table 1
were tested for compliance with IID assumptions.
Computing the BDS statistic for the residuals,
using an embedding dimension of 2 and an &=
93.8250 (¢/o=1), results in a test statistic of
3.18. This is significant at the 5% level. This
result could be due to either nonlinear depen-
dence or autoregressive conditional heteroscedas-
ticity (ARCH) (Hsieh, 1991). Engle’s ARCH test
(Engle, 1982; Kmenta, 1986) was conducted to

400
3001

200 -

-

0_.

-100

first difference

-200

-300 1

-400

determine if the significance of this BDS test is
due to heteroscedasticity of the residuals. The
ARCH test (x2 value of 2.952 is not significant
at the 5% level. These statistics imply that there
is a nonlinear dynamical component present in
the residuals of the AR(1) model.

Because of the significance of the BDS test, the
first differences where tested with the BDS test.
Using m =2, £€=95.9 (¢/c=1) yielded a BDS
statistic of 3.04; significant at the 5% level. In
contrast to the ADF test, the BDS test suggests
that further information can be gained by includ-
ing first difference terms.

Based on this result, as second regression model
was estimated. This model extends the AR(1)
model by including the lagged first difference.
The results of the regression are presented in
Table 2. The first difference term is not signifi-
cant at the 10% level. Nevertheless, the residuals
of this model were tested for IID properties.
Using an embedding dimension of 2 and an &=
93.6488 (g/0=1) results in a BDS statistic of
1.94. This value is not significant at the 5% level,
implying that the residuals of this model are IID.

It is reasonable that the inclusion of the first
difference term results in IID residuals. The sig-
nificance level of the first difference term is not
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Figure 10. First differences of deseasonalized weekly demand.
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Table 1 Regression Results of AR(1) Model for Deaseasonalized Demand

Summary of fit

r? 0.711825
Standard error of residuals 93.82498
Mean of Response 8349133
Observations 188

Analysis of variance
Source DF Sum of squares Mean square F ratio Prob > F
Model 1 4023177.2 4023177 457.0169 0.0000
Error 186 1637381.5 8803
C Total 187 5660558.7

Parameter estimates
Term Estimate Std error ¢ ratio Prob > Ir|
Intercept 132.80584 34.1385 3.89 0.0001
Des. Demand,_, 0.84331 0.03945 21.38 0.0000

so extreme as to completely preclude the term’s
relevance; particularly given that the ADF test
was unable to detect this component.

The regression parameters in Table 2 was used
to forecast deseasonalized demand. These values
were then multiplied by the appropriate weekly
indices to get a scasonalized forcast of demand.
To measure the accuracy of the model, the actual
demand was regressed against this forecast. Fig-
ure 11 demonstrates the overall fit of the model
versus the actual demand. The 45° line on the
plot represents the indeal fit. This regression
yields an r? of 0.9037. As before, the residuals of
this model were tested for IID properties. Using
an embedding dimension of 2 and an &= 91.080
(e/a=1) returns a BDS statistic of 1.87. As

expected, this is not significant at the 5% level.
This indicates that these residuals are IID and
there is little possibility of further forecasting
improvement for these data.

Application of Inventory Models

Several inventory policies were applied to the oil
filter demand data to demonstrate that stochastic
models are not optimal for demand with nonlin-
ear dependence and that improved forcasts re-
duce the average inventory costs per period. The
following costs were used to determine the aver-
age cost per period of the inventory policies:
setup = $297, holding = $15/unit/period, short-
age = $5/unit/period, lead time = 2 weeks.

Table 2 Regression Results of Modified AR(1) Model for Deseasonalized Demand

Summary of fit

r? 0.714066
Standard error of residuals 93.64883
Mean of response 848.5004
Observations 187

Analysis of variance
Source DF Sum of squares Mecan square F ratio Prob > F
Model 2 4029910.9 2014955 229.7528 0.0000
Error 184 1613699.1 8770
C Total 186 5643610.0

Parameter estimates
Term Estimate Sid error ¢ ratio Prob > 1]
Intercept 146.2676 35.6144 4.11 0.0001
Des. Demand,_, 0.8271353 0.04117 20.09 0.0000
ADes. Demand,_, 0.1143178 0.07321 1.56 0.1201
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Figure 11. Plot of forecasted demand versus actual demand.

First, the Wagner—Whiten (1958) algorithm was
applied to the most recent 50 periods (approxi-
mately one year) of the oil filter demand data to
determine the optimal inventory policy. This pol-
icy yielded an average cost per period of $258.05.
This average cost per period provides a basis of
comparison for the other inventory policies and is
required to establish the value of perfect informa-
tion.

To determine the potential effectiveness of an
(s, ) inventory policy for this demand data, an
iterative search method provided the (s, §) inven-
tory policy with the minimum average cost per
period for the last 50 periods of demand. The
resultant average cost per period was $484.14
(87.61% increase). This shows that even with a
perfect forecast, an (s, S) inventory policy is not
optimal for these data.

To determine the actual effectiveness of an
(s, 8) inventory policy for this demand data, two
(s, S) inventory models were calculated based on
the first 139 periods (nearly 3 years) of demand.
The first (s, S) policy was calculated by the simul-

Reproduced with permission of the copyright owner.

taneous determination method of Peterson and
Silver (1979), which assumes stationarity, inde-
pendence, and normality. The second (s, S) policy
was calculated by the order-statistic method of
Lordahl and Bookbinder (1994). Their method
does not assume normality, but does assume sta-
tionarity and independence. These two policies
were applied to the final 50 periods of actual
demand. The Peterson and Silver policy yielded
an average cost per period of $781.19 (202.73%
increase) and the Lordahl and Bookbinder policy
an average cost per period of $667.01 (158.48%
increase). Because these methods do not use the
last 50 periods of demand, forecasting improve-
ments cannot reduce these costs.

To determine the effects of improved forecast-
ing on inventory costs for these demand data, the
first 139 periods of demand were used to de-
termine three forecasts of the last 50 periods of
demand. The first forecast uses the average de-
mand of the first three years and the weekly
seasonalized indices from these three years. The
second |forecast was calculated from an AR(1)

Further reproduction prohibited without permission.



model; structurally identical to the model shown
in Table 1. The third forecast (denoted as AR(1)*)
was calculated from an AR(1) model augmented
by the lagged first difference term; structurally
identical to the model shown in Table 2. The
Wagner-Whiten algorithm was applied to each
forecast to determine an inventory policy for the
last 50 periods. These inventory policies were
then subjected to the actual demand and the
average inventory costs per period determined.
This represents the average cost of ordering to
satisfy forecasted demand and then being subject
to the actual demand. The seasonal index forecast
yielded average inventory costs per period of
$548.38 (112.51% increase); the AR(1) forecast
yielded average inventory costs per period of
$304.86 (18.14% increase); and the AR(1)* fore-
cast yielded average inventory costs per period of
$298.04 (15.50% increase).

Fixed period requirements policies of 1 to 20
periods were calculated using the last 50 periods
of actual demand. The two-period policy provided
the lowest average cost per period: $265.24; an
increased cost of 2.79% over the optimal cost.
This is the cost of a perfect four-period (two-
period lead time plus two periods of demand)
forcast rather than a perfect full-year forecast.
Thus, if it were possible to perfectly forecast the
oil filter demand a month in advance, the in-
crease in inventory costs would only be 2.79%
above the optimal inventory costs.

Next, two period fixed period requirements poli-
cies based on the three forecasts were applied to
the last 50 periods of actual demand. The seaso-
nal index forecast yielded average inventory costs
per period of $556.72 (115.74% increase); the

AR(1) forecast yielded average inventory costs
per period of $311.93 (20.88% increase); and the
AR(1)* forecast yielded average inventory costs
per period of $305.86 (18.14% increase).

Table 3 presents a summary of the average cost
per period of each of the inventory policies de-
scribed above. These results show that the fore-
casting improvements provide significant reduc-
tion in inventory costs over the (s, S) inventory
model costs. Comparing the costs of the (s, )
inventory policies to the costs of the
Wagner—Whiten and fixed period requirements
policies shows that applying (s, §) inventory mod-
els to this data results in significantly higher in-
ventory costs. Even the relatively naive forecast
using seasonal indices (a nonlinear component)
provides lower inventory costs than the lowest
cost (s, S) policy (Lordahl and Bookbinder, 1994)
that could be derived without a forecast.

CONCLUSION

The characteristics of nonlinear dynamical sys-
tems and their implications for inventory manage-
ment are presented in this paper. Systems with
nonlinear complexity appear random and are ex-
tremely sensitive to initial conditions and model
parameters. The experimental and theoretical ev-
idence reviewed in this paper indicates that non-
linear complexities in demand have significant
implications for inventory management. The use
of the correlation dimension and the BDS test for
the analysis of demand is also demonstrated.
These measures distinguish stochastic from non-
linear complex (deterministic) time series.

Table 3 Summary of Inventory Policy Costs Based on Demand Forecasts

Forecast W~ W(opt) FPR(2)
Actual $258.05 $265.24
0.00% 2.79%
None NA NA
Seas. ind. $548.38 $556.72
112.51% 115.74%

AR(1) $304.86 $311.92
18.14% 20.88%

AR()* $298.04 $304.86
15.50% 18.14%

Besi(s, 5) P&S(s, S) L&B(s, )

$484.14 NA NA
87.61%

NA $781.19 $667.01

202.73% 158.48%

NA " .

NA - .

NA " .

Note: AR(1)* denotes the AR(1) model with the lagged first difference term.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This paper shows that demand forecasting for
inventory management is difficult when the de-
mand time series contain nonlinear complexities.
The correlation dimension and BDS test help to
indentify further structure in forecasting models.
In addition, the BDS test can identify departures
from stochastic inventory model assumptions of
independence and stationarity. The numerical ex-
ample demonstrates that applying stochastic in-
ventory models to data containing nonlinear com-
plexities results in significantly higher inventory
costs.

Nonlinear dynamical theory does not suggest
that stochastic, econometric, and statistical meth-
ods are inappropriate. Instead, it suggests that
stochastic, econometric, and statistical methods
should be augmented by the analytic methods
described in this paper.
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